摘要:通过地下污水处理厂工程实际案例及相关规范,介绍了地下水厂内的照明设计要点、照明控制、配电方式、灯具选型等,并以工作人员需求出发,探讨了地下箱体内智能照明的控制要求及实现方案。
关键词:地下;污水处理厂;智能照明;照明控制;照明配电
0引言
根据《国民经济和社会发展第十三个五年规划纲要》要求,十三五期间,我国需加强城市基础设施建设,加大黑臭水体整治力度,要求地级及以上城市建成区黑臭水体控制在10%以内。为此,各地新建污水处理厂日益增多,水厂选址问题日益突出,一方面城市建设用地资源紧缺,且征地越来越困难,另一方面污水处理厂对周围大气环境有一定的污染,造成周边地区土地价值下降,甚至容易引起民众不满。为应对土地资源限制和满足更生态环境需求,我国城市污水处理厂建设开始向地下寻求空间。地下污水处理厂一般将所有功能部分集成于一个地下箱体,箱体竖向分2层,上层为设备和操作巡视层,下层为池体和管廊。一般箱体单层面积在10000m²左右,大规模水厂地下箱体单层面积可达40000m²以上。为便于工作人员日常巡视及设备操作维修,箱体内所有空间均需要设置适当的照明,对于不同的工艺段,照明要求也不同,本文将以湘潭市河东污水处理厂工程为例,详细介绍地下污水处理厂照明设计方法。
1地下水厂照明设计要点
包含格栅间、加药间、脱水间及变配电间等多个独立房间,大面积的生化池、二沉池的池顶设备层,以及管廊、通道及楼梯间。水厂内放置大量的机电设备、管道、缆线、仪表等设施,且经常有运维人员操作、巡视、维护,因此需要提供良好、可靠的照明系统作为安全、效工作的保障。
照明设计内容依据相关规范包括:一般照明、局部加强照明、应急疏散照明、应急备用照明和灯光疏散指示五个部分。
一般照明--设置于箱体内所有部位,用于日常工作人员操作、巡视、检修,其地面平均照度要求依据《建筑照明设计标准》设置。
局部加强照明--设置在工序复杂、设备集中部位,供工作人员进行长时间操作或仔细观察现场情况。
应急疏散照明——当水厂发生火灾等紧急情况,主电源不能正常工作时,在人员疏散通道上应开启应急疏散照明灯,水平通道平均照度不低于1lx,楼梯间平均照度不低于5lx。应急照明电源持续时间不小于60min²]。
应急备用照明——在水厂变配电间及消防控制室、消防配电室等在发生火灾时需要继续工作的场所内,应设置应急备用照明,其照度应与该场所正常照明照度相同,应急电源持续时间不小于180min。
灯光疏散指示——在地下箱体出入口及各防火门上方应设置安全出口标志灯,疏散通道沿线设置方向疏散指示灯,间距不大于20m。
2工程设计实例
2.1工程概况
本次介绍的地下水厂案例为湘潭市河东污水处理厂。地下箱体长247m,宽52m,分为上下2层(图1)。包括进水泵房、格栅间、生物反应池、二沉池、鼓风机房、脱水机房、加药间以及地下变配电间等部分,全部照明面积超过1.6万m²。
2.2照明设计方案
2.2.1一般照明设计
依据《建筑照明设计标准》,箱体内不同部位按表1照度设置一般工作照明。
生物反应池、沉砂池池顶部分是整个箱体照明区域的主体,面积超过9000m²,主要为平面无差,几乎无遮挡物,梁下净空5m。考虑经济性及维护要求,灯具不宜布置过密集,同时因层较低,为达到照明均匀度要求,采用特广照型配光曲线的吊灯,光源为250W金卤灯,距地面4.5m安装,平面上按7.5m×7.5m阵列布置。
乙酸钠投加间、次氯酸钠投加间等加药间空间较小且设备集中,采用T8荧光灯管照明,因房间内有腐蚀性溶液池,故灯具均为防腐型。
2.2.2应急备用照明设计
本工程变配电间位于地下箱体内,因水厂的消防用电设备配电也在该配电间中,故当有火灾或其他紧急情况发生且正常电源被切断时,变配电间内应维持正常照度。
变配电间内采用自带蓄电池的T8荧光灯管,电源引自单独设置的应急照明配电箱,当火灾发生时,消防系统信号控制应急照明箱切断灯具的充电线,强制灯具点亮。
2.2.3应急疏散照明设计
应急疏散照明设置于箱体内所有通道及楼梯间,在狭长的平面无遮挡物的通道采用吊装荧光灯管照明,在管廊内,因存在多层走道,且管道错综复杂,仅靠吊装灯具无法满足要求,需在两侧墙壁安装壁灯作为辅助照明(图2)。
楼梯间照明采用红外感应触发开启的灯具,仅在有人通过时点亮。
疏散照明灯具电源引自各防火分区的应急照明配电箱。
2.3灯具选型
地下水厂特别是下层的管廊内各种管线错综复杂,仪表、阀门繁多,人员活动空间相对狭小,有时灯具会因条件限制安装在较低处,很容易被人体接触,或在搬运设备、管道时遭受撞击而损坏、漏电。因此管廊内所有照明灯具均应为I类防触电保护灯具,且能触及到的可导电部分需与固定线路中的保护线可靠连接,光源应具有防外力撞击的外壳保护。
因长期受地下水侵蚀,地下箱体内常年空气潮湿,且有混凝土墙体漏水及水管爆管风险,因此灯具应选择防潮型,且防护等级不低于IP54。
3照明配电及控制
3.1照明配电设计
地下水厂一般工作照明为三级负荷,应急照明、消防疏散照明为二级负荷。每个防火分区均设置正常照明配电箱和应急照明配电箱。其中正常照明配电箱电源直接引自变配电间,应急照明配电箱除由变电站提供一路电源外,另在箱内设置EPS(EmergencyPowerSupply)作为备用电源,以满足二级负荷要求。同时,应急照明箱设置母线电压检测器,当电源停电时可向监控中心报警,以便及时采取措施。
3.2控制方式
3.2.1照明控制需求分析
一般地下水厂空间较大,每个房间内安装十几甚至几十套灯具,房间出入口相距甚远,日常工作人员巡视的路线较长,巡视员从箱体入口进入水厂,并通过一扇扇防火门依次通过每个分区,完成巡视。在这个过程中,巡视员从某个房间一端防火门进入房间时开启房间内照明,至另一端防火门离开房间时关闭照明。巡视一般不走回头路。
随着技术进步,地下水厂管理水平也在不断提。新近出现的基于BIM(BuildingInformationModeling)和GIS(GeographicInformat*tem)的远程故障诊断技术和巡检机器人技术,使管理员可以在中控室上位机上随意调出现场任意位置的实时画面,甚至可以远程进行维护操作。这要求地下箱体内的照明均可在中控室进行集中远程控制或编程自动控制,这应该成为新建地下水厂照明控制的基本需求。
无论从照明布线角度,还是控制需要,传统的翘板开关控制方式不能满足地下水厂照明需求。
3.2.2智能照明控制系统
对于较复杂的照明控制,可采用智能照明控制系统实现。这种系统已经广泛应用于大型楼宇、酒店、会馆等领域,其代表产品有施耐德的C-bus系统和ABB的i-bus系统,其特点是采用简单的布线即可搭建规模庞大的系统,实现丰富多样的控制策略。针对工程需要,系统可轻松实现以下控制效果:
-通过智能面板手动控制任意回路开关;
-通过传感器对灯光进行自动控制,如人来灯亮,人走灯灭(暗);
-通过手持遥控器对灯光进行控制;
-预设多个不同场景,及对应的照明效果;
-通过网络实现上位机远程控制或编程控制。
在智能照明控制网络(如图3)上,每组灯具(回路),每个开关或传感器都可看做网络上的一个节点,它们彼此之间采用总线串接,并凭借自己独立的地址可实现相互通讯。这使得照明布线变得简单,大大降低了施工难度。
通过上述分析,地下水厂适合采用智能照明控制系统,工程在每个照明控制箱内安装智能照明控制模块,并通过以太网接口与箱体内交换机相连,交换机将所有控制模块信号汇总后通过光纤上传至水厂综合楼的中控室上位机。
4.1平台概述
安科瑞电气具备从终端感知、边缘计算到能效管理平台的产品生态体系,AcrelEMS-SW智慧水务能效管理平台通过在污水厂源、网、荷、储、充的各个关键节点安装保护、监测、分析、治理装置,用于监测污水厂能耗总量和能耗强度,重点监测主要用能设备能效,保护污水厂运行安全可靠,提污水厂能效,为污水处理的能效管理提供科学、精细的解决方案。
4.2平台组成
AcrelEMS智慧水务综合能效管理系统由变电站综合自动化系统、电力监控及能效管理系统组成,涵盖了水务中压变配电系统、电气安全、应急电源、能源管理、照明控制、设备运维等,贯穿水务能源流的始终,帮助运维管理人员通过一套平台、一个APP实时了解水务配电系统运行状况,并且根据权限可以适用于水务后勤部门管理需要。
4.3平台拓扑图
4.4平台子系统
4.4.1变电站综合自动化系统及电力监控
对水务配电系统中34kV、10kV电压等级配置继电保护和弧光保护,实现遥测、遥信、遥控、遥调等功能,对异常情况及时预警。
监测变压器、水泵、鼓风机的电流、电压、有功/无功功率、功率因数、负荷率、温度、三相平衡、异常报警等数据。
4.4.2电能质量监测与治理
水务中大量的大功率电机、水泵变频启动导致配电系统中存在大量谐波,通过监测其配电系统的谐波畸变、电压波动、闪变和容忍度指标分析其电能质量,并配置对应的电能质量治理措施提供电电能质量。
4.4.3电动机管理
马达监控实现水务中电机的保护、遥测、遥信、遥控功能,电动机保护器能对过载、短路、缺相、漏电等异常情况进行保护、监测和报警。效、准确地反映出故障状态、故障时间、故障地点、及相关信息,对电机进行健康诊断和预防性维护。同时支持与PLC、软启、变频器等配合,实现电动机自动或远程控制,监视、控制各个工艺设备,保障正常生产。
4.4.4能耗管理
为水务搭建计量体系,显示水务的能源流向和能源损耗,通过能源流向图帮助水务分析能源消耗去向,找出能源消耗异常区域。
将所有有关能源的参数集中在一个看板中,从多个维度对比分析,实现各个工艺环节的能耗对比,帮助领导掌控整个工厂的能源消耗,能源成本,标煤排放等的情况。
能耗数据统计采集水务中污水厂、自来水厂、水泵站等的用电、用水、燃气、冷热量消耗量,同环比对比分析,能耗总量和能耗强度计算,标煤计算和CO2排放统计趋势。
能效分析按三级计量架构,分别进行能效分析,契合能源管理体系要求,可对各车间/职能部门的能效水平进行分析,同比、环比、对标等。通过污水处理产量以及系统采集的能耗数据,在污水单耗中生成污水单耗趋势图,并进行同比和环比分析,同时将污水的单耗与行业/先进指标对标,以便企业能够根据产品单耗情况来调整生产工艺,从而降低能耗。
系统为污水厂、自来水厂、水泵站等提供了照明控制管理方案,支持单控、区域控制、自动控制、感应控制、定时控制、场景控制、调光控制等多种控制方式,模块可根据经纬度自动识别日出日落时间实现自动控制功能,尽量利用自然光照,实现室内、厂区照明的智能控制达到安全、节能、舒适、效的目的。
(1)电气火灾监测
监测配电系统回路的漏电电流和线缆温度,实现对污水厂、自来水厂、水泵站的电气安全预警。
(2)消防应急照明和疏散指示
根据预先设置的应急预案快速启动疏散方案引导人员疏散。系统接入消防应急照明指示系统数据,通过平面图显示疏散指示灯具工作状态和异常情况。
(3)消防设备电源监测
监测消防设备的工作电源是否正常,保障在发生火灾时消防设备可以正常投入使用。
(4)防火门监控系统
防火门监控系统集中控制其各终端设备即防火门监控模块、电动闭门器、电磁释放器的工作状态,实时监测疏散通道防火门的开启、关闭及故障状态,显示终端设备开路、短路等故障信号。系统采用消防二总线将具有通信功能的监控模块相互连接起来,当终端设备发生短路、断路等故障时,防火门监控器能发出报警信号,能指示报警部位并保存报警信息,保障了电气安全的可靠性。
4.4.7环境监测
污水厂、自来水厂、水泵站等场所温湿度、烟雾、积水浸水、视频、UPS电池间可燃气体浓度展示和预警,保障污水厂、自来水厂、水泵站等安全运行。当可燃气体或有害气体浓度超标可自动启动排风风机或新风系统,排除隐患,保持良好的水处理环境。
4.4.8分布式光伏监测
实时监测低压并网柜每路的电流、电压、功率等电气参数及断路器开关状态,逆变器运行监视,对逆变器直流侧每一光伏组串的输入直流电压、直流电流、直流功率,逆变器交流电压、交流电流、频率、功率因数、当前发电功率、累计发电量进行监测,以曲线方式绘制上述监测的各个参量的历史数据。
平台结合厂区实际分布情况,通过3D或2.4D平面图显示分布式光伏组件在屋顶、车棚的分布情况,显示汇流箱、并网点位置,各个屋顶的装机容量。
平台通过2D、3D方式实时监视粗格栅、污水提升、细格栅、曝气沉砂、改良生化处理、二沉、加氯接触消毒、污泥浓缩压滤、生物除臭等工艺设备运行状态。在格栅清渣机、污水提升泵、回流泵、曝气风机、加药泵、浓缩压滤机、吸沙泵、吸泥泵等低压电动机控制柜或低压馈电柜安装电动机保护,进行短路、过流、过载、起动超时、断相、不平衡、低功率、接地/漏电、te保护、堵转、逆序、温度等保护以及外部故障连锁停机,与PLC、软启、变频器等配合,实现电动机自动或远程控制,监视、控制各个工艺设备,保障正常生产。
5结语
目前大型地下水厂内的照明设计方法多样,各有自身的优点和不足,本文以实际工程为例,探讨了在地下水厂特殊工程环境下,照明灯具的布置方法,同时,结合实际使用需求,提出了照明的控制方案。作者认为,随着同类工程经验的积累,建设水平的不断提,特别是针对大型地下环境的新产品不断研发,包括控制方案在内的照明设计以实践为基础不断探索新思路,勇于创新,努力为运营人员提供更人性化更安全的工作环境。
参考文献:
[1]杰.城市地下污水处理厂工程的照明设计 中国照明电器1002-6150(2019)11-024-04
[2]邱维.我国地下污水处理厂建设现状及展望[J].中国给水排水2017,33(6):18-26.
[3]安科瑞企业微电网设计应用手册.2022.04版
作者简介:
翟雪玲,女,现任职于安科瑞电气股份有限公司,主要从智慧水务研究发展。