欢迎进入上海安科瑞新能源有限公司!
技术文章
首页 > 技术文章 > 浅谈分布式新能源发电中的储能系统能量管理分析

浅谈分布式新能源发电中的储能系统能量管理分析

 更新时间:2024-05-11 点击量:89

摘要:阐述分布式新能源交直流母线混合型分布式发电储能系统,分布式新能源发电中的储能系统工作模式,各种工作模式下的电能管理策略,探讨超*电容与蓄电池两者共同组成的混合储能系统。

关键词:混合储能系统,分布式新能源,电能管理。

0、引言

分布式发电中的储能系统为了有*降低功率波单电压获取剩余容量。但需要特别注意的是,电池动所带来的影响,就需要在外部电网展开新能源输在工作过程中,剩余容量和单电压两者之间并不存出,从而促使系统时刻维持自带负载输出状态。

1、分布式新能源交直流母线混合型分布式发电储能系统

文章所阐述的分布式新能源发电系统主要指的是交直流母线混合型分布式发电系统。此发电系统主要利用新能源太阳能与风能进行发电。通常情况下,太阳能与风能发电的跟*状态都处于**功率点,但是由于这两种新能源发电模式非常容易受到天气等各种因素的影响与干扰,*终造成系统输出功率状态不能时刻保持稳定状态。因此,为了充分确保此系统可以在孤岛条件下长时间处于稳定运行状态,文章通过分析将超*电容与蓄电池作为系统储能装置,通过二者剩余容量以及自身特点等各种实际运行情况,制定出不同的控制策略,从而达到对系统能量进行有*管理的目的[1]。

  1. 分布式新能源发电中的储能系统工作模式

系统能源管理过程中的关键参考依据包括两个主要方面,(1)电池的超前状态;(2)超*电容器。在物理算法中超电容器和单电压的平方形成正比例关系,由此可以推出能够通过测量超电容器的单电压获取剩余容量。但需要特别注意的是,电池在工作过程中,剩余容量和单电压两者之间并不存在明确的函数关系,在此情况下就需要采取间接测量法。分布式新能源发电中的储能系统使用的是系统系数积分法与卡门过滤器,从而实现在电池的线上能够计算出SOC。本文对此进行简要的分析与讨论,根据相关预测,假若将电力容量的SOC正常状态设定为20%~90%之间,那么低容量可能为20%以下,容量则为90%以上。可以得出在实际应用过程中会存在诸如SOC的30%~90%、电池、低容量以及容量等多种模式。当采用同一种控制策略应对所有模式时,检查电池的SOC、超*电容器以及系统运行时间之外的电网,就可以明确分布式新能源中储存能量所需的控制策略。如图1所示,AC/DC总线混合发电系统,主要借助太阳能和风力发电,通常情况下,在实际运行过程中,*的跟*状态则为太阳能与风力发电输出处于快速的变化因素。例如,在天气情况良好的状态下,采用超*电容器作为能源储存设备。分布式新能源发电中储能系统为了促使其能够在孤岛状态下处于长期而稳定的运行模式,就会利用长期能量储存装置,使用大容量电池,如612V/65Hz。应明确的是,必*根据两种不同的能源储存单元的自身特点、外部电网实际状况以及剩余容量情况等,分别采用针对性的控制策略[2]。


图1交流混合母线分布式发电系统

  1. 各种工作模式下的电能管理策略

  2. 储能系统均处于正常模式的情况。此模式是*为常见的工作模式,此时电池剩余容量与超*电容都维持在正常状态。但由于新能源发电系统采用的太阳能与风能发电模式都具备间歇性特质,因此在实际运行时*易发生本地载荷骤然降低或增加的突发*况。当出现此种情况时,势必会导致发电系统输出功率发生频波动。并且同时又因为蓄电池装置需要比较长的时间来完成充电或是放点过程,就难以及时有*的控制此种频波动。所以,就应当充分利用超*电容控制这部分波动功率。除此之外,在分布式新能源发电储能系统处在孤岛条件或并网状态下运行时,同样可以对储能系统中的功率采取上述能量管理策略进行合理的配置,根据实际运行情况产生出实际所需功率。同时能够通过合理调节增益K的方式,实现有*分配超*电容与蓄电池两种储能装置所输出的功率。例如,当超*电容剩余较大的容量时,可以将增益K相应的提,从而促使超*电容能够承担较多的功率输出。

(2)蓄电池异常模式。蓄电池异常模式状态下的情况主要表现为蓄电池储能装置所剩余的容量处于较低或较的状态,而超*电容装置当中的剩余容量却一直处于正常状态。在此种情况下,就会使整体电网系统运行的安全性与稳定性大幅度降低,因此,为了确保系统的正常运行,必*在*短的时间内使系统恢复到正常工作模式。同时,当分布式发电中的储能系统处于并网状态的情况下,其实际的运行状态就会与蓄电池电容异常模式比较接近,此时,为了尽快恢复蓄电池装置自身的剩余容量,就必*采用内外电网能量交换的方法,从而真*确保系统的正常运行。在此过程中,可能会产生一定的功率冲击,但其对系统造成的实际影响并不明显。除此之外,在孤岛状态下储能系统实际运行过程中,由于超*电容装置自身能量存储状态有一定的限*,因此难以促使蓄电池装置在短时间内借助能量传递的方式恢复到正常工作状态。针对此种情况,就只能借助超*电容来确保能量的有*传递,直到并网成功之后,才能够再将蓄电池装置充电,从而确保其能够恢复到正常的运行状态[3]。

(3)超*电容异常模式。对于超*电容异常模式来讲,其所表现出的异常情况为:当蓄电池储能装置自身的剩余容量处于正常状态下,而超*电容储能装置当中的剩余容量却会发生较或较低的异常情况。在此种背景下,分布式发电储能系统自身性能就会大幅度降低,例如其吸收与释放频功率性能,严重时还会给整体系统相应功能带来严重的负面影响。必*及时使系统恢复到正常的工作模式。与此同时,当分布式新能源发电中储能系统处于并网状态当中时,可以将外部电网视为一个不设上限的电网连接,在此情况下,超*电容就可以借助能量传递的方式,来将超出自身的能量传递到外部电网当中,从而能够促使自身在短时间内恢复到正常的运行状态。此外,在孤岛状态下,储能系统运行过程当中,由于会缺乏外部电网提供的相应辅助支持,因此就应当充分确保储能系统一直维持在功率平衡的稳定状态,通过超*电容来切实提升系统自身的反应力。与此同时,为了确保分布式新能源发电输出功率稳定性的有*提升,还必*强化超*电容与蓄电池二者储能装置之间的能量传递,从而切实达到能量有*管理的目的。

(4)全部异常模式。对于全部异常模式状态下的能量管理策略来讲,必*综合考虑上述几种异常模式,通过直流母线之间的相互均衡,从而促使异常模式能够合理转述为上述的其中一个模式,进而可以再运用相对应的管理策略实行控制。针对都处于异常模式下的能量管理策略来讲,可以分为下面两种情况:①蓄电池剩余容量与超*电容都处于过的情况,此时就需要在孤岛运行过程中,控制其自身输出功率;②对于蓄电池剩余容量与超*电容两者都处在过低的状态下来讲,为了有*维持敏*负荷始终处于正常状态下,就必*剔除一些不必要的负载,从而充分确保分布式新能源发电系统处于稳定状态。

  1. Acrel-2000MG微电网能量管理系统概述

4.1概述

Acrel-2000MG微电网能量管理系统,是我司根据新型电力系统下微电网监控系统与微电网能量管理系统的要求,总结国内外的研究和生产的先进经验,专门研制出的企业微电网能量管理系统。本系统满足光伏系统、风力发电、储能系统以及充电桩的接入,全天候进行数据采集分析,直接监视光伏、风能、储能系统、充电桩运行状态及健康状况,是一个集监控系统、能量管理为一体的管理系统。该系统在安全稳定的基础上以经济优化运行为目标,提升可再生能源应用,提电网运行稳定性、补偿负荷波动;有*实现用户侧的需求管理、消除昼夜峰谷差、平滑负荷,提电力设备运行效率、降低供电成本。为企业微电网能量管理提供安全、可靠、经济运行提供了全新的解决方案。

微电网能量管理系统应采用分层分布式结构,整个能量管理系统在物理上分为三个层:设备层、网络通信层和站控层。站级通信网络采用标准以太网及TCP/IP通信协议,物理媒介可以为光纤、网线、屏蔽双绞线等。系统支持ModbusRTU、ModbusTCP、CDT、IEC60870-5-101、IEC60870-5-103、IEC60870-5-104、MQTT等通信规约。

4.2技术标准

本方案遵循的国家标准有:

本技术规范书提供的设备应满足以下规定、法规和行业标准:

GB/T26802.1-2011工业控制计算机系统通用规范第1部分:通用要求

GB/T26806.2-2011工业控制计算机系统工业控制计算机基本平台第2部分:性能评定方法

GB/T26802.5-2011工业控制计算机系统通用规范第5部分:场地安全要求

GB/T26802.6-2011工业控制计算机系统通用规范第6部分:验收大纲

GB/T2887-2011计算机场地通用规范

GB/T20270-2006信息安全技术网络基础安全技术要求

GB50174-2018电子信息系统机房设计规范

DL/T634.5101远动设备及系统第5-101部分:传输规约基本远动任务配套标准

DL/T634.5104远动设备及系统第5-104部分:传输规约采用标准传输协议子集的IEC60870-5-网络访问101

GB/T33589-2017微电网接入电力系统技术规定

GB/T36274-2018微电网能量管理系统技术规范

GB/T51341-2018微电网工程设计标准

GB/T36270-2018微电网监控系统技术规范

DL/T1864-2018型微电网监控系统技术规范

T/CEC182-2018微电网并网调度运行规范

T/CEC150-2018低压微电网并网一体化装置技术规范

T/CEC151-2018并网型交直流混合微电网运行与控制技术规范

T/CEC152-2018并网型微电网需求响应技术要求

T/CEC153-2018并网型微电网负荷管理技术导则

T/CEC182-2018微电网并网调度运行规范

T/CEC5005-2018微电网工程设计规范

NB/T10148-2019微电网第1部分:微电网规划设计导则

NB/T10149-2019微电网第2部分:微电网运行导则

4.3适用场合

系统可应用于城市、速公路、工业园区、工商业区、居民区、智能建筑、海岛、无电地区可再生能源系统监控和能量管理需求。

4.4型号说明


Acrel-2000系列监控系统MG—微电网能量管理系统。

5.1系统架构

本平台采用分层分布式结构进行设计,即站控层、网络层和设备层,详细拓扑结构如下:

实时监测

微电网能量管理系统人机界面友好,应能够以系统一次电气图的形式直观显示各电气回路的运行状态,实时监测各回路电压、电流、功率、功率因数等电参数信息,动态监视各回路断路器、隔离开关等合、分闸状态及有关故障、告警等信号。其中,各子系统回路电参量主要有:三相电流、三相电压、总有功功率、总无功功率、总功率因数、频率和正向有功电能累计值;状态参数主要有:开关状态、断路器故障脱扣告警等。

系统应可以对分布式电源、储能系统进行发电管理,使管理人员实时掌握发电单元的出力信息、收益信息、储能荷电状态及发电单元与储能单元运行功率设置等。

系统应可以对储能系统进行状态管理,能够根据储能系统的荷电状态进行及时告警,并支持定期的电池维护。

微电网能量管理系统的监控系统界面包括系统主界面,包含微电网光伏、风电、储能、充电桩及总体负荷组成情况,包括收益信息、天气信息、节能减排信息、功率信息、电量信息、电压电流情况等。根据不同的需求,也可将充电,储能及光伏系统信息进行显示。

  1. 结束语

本文探讨超*电容与蓄电池两者共同组成的混合储能系统,设计出具备针对性的能力管理策略,从而助力分布式新能源发电系统运行中的功率平衡,**程度上降低系统内部功率波动给外部电网产生的负面冲击,有*确保在孤岛条件下分布式新能源发电系统能够平稳运行。

参考文献

  1. 蔡福霖,胡泽春,曹敏健,蔡德福,陈汝斯,孙冠群.提升新能源消纳能力的集中式与分布式电池储能协同规划[J].电力系统自动化,2022,46(20):23-32.

  2. 夏荣,李奎.分布式新能源发电中的储能系统能量管理

  3. 安科瑞企业微电网设计与应用设计,2022,05版.